Analysis of exome data for 4293 trios suggests GPI-anchor biogenesis defects are a rare cause of developmental disorders

نویسندگان

  • Alistair T Pagnamenta
  • Yoshiko Murakami
  • John M Taylor
  • Consuelo Anzilotti
  • Malcolm F Howard
  • Venessa Miller
  • Diana S Johnson
  • Shereen Tadros
  • Sahar Mansour
  • I Karen Temple
  • Rachel Firth
  • Elisabeth Rosser
  • Rachel E Harrison
  • Bronwen Kerr
  • Niko Popitsch
  • Taroh Kinoshita
  • Jenny C Taylor
  • Usha Kini
چکیده

Over 150 different proteins attach to the plasma membrane using glycosylphosphatidylinositol (GPI) anchors. Mutations in 18 genes that encode components of GPI-anchor biogenesis result in a phenotypic spectrum that includes learning disability, epilepsy, microcephaly, congenital malformations and mild dysmorphic features. To determine the incidence of GPI-anchor defects, we analysed the exome data from 4293 parent-child trios recruited to the Deciphering Developmental Disorders (DDD) study. All probands recruited had a neurodevelopmental disorder. We searched for variants in 31 genes linked to GPI-anchor biogenesis and detected rare biallelic variants in PGAP3, PIGN, PIGT (n=2), PIGO and PIGL, providing a likely diagnosis for six families. In five families, the variants were in a compound heterozygous configuration while in a consanguineous Afghani kindred, a homozygous c.709G>C; p.(E237Q) variant in PIGT was identified within 10-12 Mb of autozygosity. Validation and segregation analysis was performed using Sanger sequencing. Across the six families, five siblings were available for testing and in all cases variants co-segregated consistent with them being causative. In four families, abnormal alkaline phosphatase results were observed in the direction expected. FACS analysis of knockout HEK293 cells that had been transfected with wild-type or mutant cDNA constructs demonstrated that the variants in PIGN, PIGT and PIGO all led to reduced activity. Splicing assays, performed using leucocyte RNA, showed that a c.336-2A>G variant in PIGL resulted in exon skipping and p.D113fs*2. Our results strengthen recently reported disease associations, suggest that defective GPI-anchor biogenesis may explain ~0.15% of individuals with developmental disorders and highlight the benefits of data sharing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PIGO deficiency: palmoplantar keratoderma and novel mutations

BACKGROUND Several genetic defects have been identified in the glycosylphosphatidylinositol (GPI) anchor synthesis, including mutations in PIGO encoding phosphatidylinositol glycan anchor biosynthesis class O protein. These defects constitute a subgroup of the congenital disorders of glycosylation (CDG). Seven patients from five families have been reported carrying variants in PIGO that cause a...

متن کامل

Mutations in PGAP3 impair GPI-anchor maturation, causing a subtype of hyperphosphatasia with mental retardation.

Glycosylphophatidylinositol (GPI)-anchored proteins play important roles in many biological processes, and mutations affecting proteins involved in the synthesis of the GPI anchor are reported to cause a wide spectrum of intellectual disabilities (IDs) with characteristic additional phenotypic features. Here, we describe a total of five individuals (from three unrelated families) in whom we ide...

متن کامل

Whole exome sequencing in family trios reveals de novo mutations in PURA as a cause of severe neurodevelopmental delay and learning disability

BACKGROUND De novo mutations are emerging as an important cause of neurocognitive impairment, and whole exome sequencing of case-parent trios is a powerful way of detecting them. Here, we report the findings in four such trios. METHODS The Deciphering Developmental Disorders study is using whole exome sequencing in family trios to investigate children with severe, sporadic, undiagnosed develo...

متن کامل

A novel method for detecting uniparental disomy from trio genotypes identifies a significant excess in children with developmental disorders.

Exome sequencing of parent-offspring trios is a popular strategy for identifying causative genetic variants in children with rare diseases. This method owes its strength to the leveraging of inheritance information, which facilitates de novo variant calling, inference of compound heterozygosity, and the identification of inheritance anomalies. Uniparental disomy describes the inheritance of a h...

متن کامل

Whole Exome Sequencing Reveals a BSCL2 Mutation Causing Progressive Encephalopathy with Lipodystrophy (PELD) in an Iranian Pediatric Patient

Background: Progressive encephalopathy with or without lipodystrophy is a rare autosomal recessive childhood-onset seipin-associated neurodegenerative syndrome, leading to developmental regression of motor and cognitive skills. In this study, we introduce a patient with developmental regression and autism. The causative mutation was found by exome sequencing. Methods: The proband showed a gener...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2017